30 research outputs found

    Self-supervised Contrastive Video-Speech Representation Learning for Ultrasound

    Get PDF
    In medical imaging, manual annotations can be expensive to acquire and sometimes infeasible to access, making conventional deep learning-based models difficult to scale. As a result, it would be beneficial if useful representations could be derived from raw data without the need for manual annotations. In this paper, we propose to address the problem of self-supervised representation learning with multi-modal ultrasound video-speech raw data. For this case, we assume that there is a high correlation between the ultrasound video and the corresponding narrative speech audio of the sonographer. In order to learn meaningful representations, the model needs to identify such correlation and at the same time understand the underlying anatomical features. We designed a framework to model the correspondence between video and audio without any kind of human annotations. Within this framework, we introduce cross-modal contrastive learning and an affinity-aware self-paced learning scheme to enhance correlation modelling. Experimental evaluations on multi-modal fetal ultrasound video and audio show that the proposed approach is able to learn strong representations and transfers well to downstream tasks of standard plane detection and eye-gaze prediction.Comment: MICCAI 2020 (early acceptance

    Problems with Saliency Maps

    Get PDF
    Despite the popularity that saliency models have gained in the computer vision community, they are most often conceived, exploited and benchmarked without taking heed of a number of problems and subtle issues they bring about. When saliency maps are used as proxies for the likelihood of fixating a location in a viewed scene, one such issue is the temporal dimension of visual attention deployment. Through a simple simulation it is shown how neglecting this dimension leads to results that at best cast shadows on the predictive performance of a model and its assessment via benchmarking procedures

    Larger visual changes compress time: The inverted effect of asemantic visual features on interval time perception; 35316292

    Get PDF
    Time perception is fluid and affected by manipulations to visual inputs. Previous literature shows that changes to low-level visual properties alter time judgments at the millisecond-level. At longer intervals, in the span of seconds and minutes, high-level cognitive effects (e.g., emotions, memories) elicited by visual inputs affect time perception, but these effects are confounded with semantic information in these inputs, and are therefore challenging to measure and control. In this work, we investigate the effect of asemantic visual properties (pure visual features devoid of emotional or semantic value) on interval time perception. Our experiments were conducted with binary and production tasks in both conventional and head-mounted displays, testing the effects of four different visual features (spatial luminance contrast, temporal frequency, field of view, and visual complexity). Our results reveal a consistent pattern: larger visual changes all shorten perceived time in intervals of up to 3min, remarkably contrary to their effect on millisecond-level perception. Our findings may help alter participants'' time perception, which can have broad real-world implications

    PathGAN: visual scanpath prediction with generative adversarial networks

    Get PDF
    “This is a post-peer-review, pre-copyedit version of an article published in: Computer Vision – ECCV 2018 Workshops. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-11021-5_25”.We introduce PathGAN, a deep neural network for visual scanpath prediction trained on adversarial examples. A visual scanpath is defined as the sequence of fixation points over an image defined by a human observer with its gaze. PathGAN is composed of two parts, the generator and the discriminator. Both parts extract features from images using off-the-shelf networks, and train recurrent layers to generate or discriminate scanpaths accordingly. In scanpath prediction, the stochastic nature of the data makes it very difficult to generate realistic predictions using supervised learning strategies, but we adopt adversarial training as a suitable alternative. Our experiments prove how PathGAN improves the state of the art of visual scanpath prediction on the iSUN and Salient360! datasets.Peer ReviewedPostprint (author's final draft

    How to look next? A data-driven approach for scanpath prediction

    Get PDF
    By and large, current visual attention models mostly rely, when considering static stimuli, on the following procedure. Given an image, a saliency map is computed, which, in turn, might serve the purpose of predicting a sequence of gaze shifts, namely a scanpath instantiating the dynamics of visual attention deployment. The temporal pattern of attention unfolding is thus confined to the scanpath generation stage, whilst salience is conceived as a static map, at best conflating a number of factors (bottom-up information, top-down, spatial biases, etc.). In this note we propose a novel sequential scheme that consists of a three-stage processing relying on a center-bias model, a context/layout model, and an object-based model, respectively. Each stage contributes, at different times, to the sequential sampling of the final scanpath. We compare the method against classic scanpath generation that exploits state-of-the-art static saliency model. Results show that accounting for the structure of the temporal unfolding leads to gaze dynamics close to human gaze behaviour

    Saliency Benchmarking Made Easy: Separating Models, Maps and Metrics

    Full text link
    Dozens of new models on fixation prediction are published every year and compared on open benchmarks such as MIT300 and LSUN. However, progress in the field can be difficult to judge because models are compared using a variety of inconsistent metrics. Here we show that no single saliency map can perform well under all metrics. Instead, we propose a principled approach to solve the benchmarking problem by separating the notions of saliency models, maps and metrics. Inspired by Bayesian decision theory, we define a saliency model to be a probabilistic model of fixation density prediction and a saliency map to be a metric-specific prediction derived from the model density which maximizes the expected performance on that metric given the model density. We derive these optimal saliency maps for the most commonly used saliency metrics (AUC, sAUC, NSS, CC, SIM, KL-Div) and show that they can be computed analytically or approximated with high precision. We show that this leads to consistent rankings in all metrics and avoids the penalties of using one saliency map for all metrics. Our method allows researchers to have their model compete on many different metrics with state-of-the-art in those metrics: "good" models will perform well in all metrics.Comment: published at ECCV 201

    Velocity tuning of friction with two trapped atoms

    Get PDF
    Our ability to control friction remains modest, as our understanding of the underlying microscopic processes is incomplete. Atomic force experiments have provided a wealth of results on the dependence of nanofriction on structure velocity and temperature but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a description from first principles. Here, using an ion-crystal system with single-atom, single-substrate-site spatial and single-slip temporal resolution we measure the friction force over nearly five orders of magnitude in velocity, and contiguously observe four distinct regimes, while controlling temperature and dissipation. We elucidate the interplay between thermal and structural lubricity for two coupled atoms, and provide a simple explanation in terms of the Peierls–Nabarro potential. This extensive control at the atomic scale enables fundamental studies of the interaction of many-atom surfaces, possibly into the quantum regime

    Unified Image and Video Saliency Modeling

    Full text link
    Visual saliency modeling for images and videos is treated as two independent tasks in recent computer vision literature. While image saliency modeling is a well-studied problem and progress on benchmarks like SALICON and MIT300 is slowing, video saliency models have shown rapid gains on the recent DHF1K benchmark. Here, we take a step back and ask: Can image and video saliency modeling be approached via a unified model, with mutual benefit? We identify different sources of domain shift between image and video saliency data and between different video saliency datasets as a key challenge for effective joint modelling. To address this we propose four novel domain adaptation techniques - Domain-Adaptive Priors, Domain-Adaptive Fusion, Domain-Adaptive Smoothing and Bypass-RNN - in addition to an improved formulation of learned Gaussian priors. We integrate these techniques into a simple and lightweight encoder-RNN-decoder-style network, UNISAL, and train it jointly with image and video saliency data. We evaluate our method on the video saliency datasets DHF1K, Hollywood-2 and UCF-Sports, and the image saliency datasets SALICON and MIT300. With one set of parameters, UNISAL achieves state-of-the-art performance on all video saliency datasets and is on par with the state-of-the-art for image saliency datasets, despite faster runtime and a 5 to 20-fold smaller model size compared to all competing deep methods. We provide retrospective analyses and ablation studies which confirm the importance of the domain shift modeling. The code is available at https://github.com/rdroste/unisalComment: Presented at the European Conference on Computer Vision (ECCV) 2020. R. Droste and J. Jiao contributed equally to this work. v3: Updated Fig. 5a) and added new MTI300 benchmark results to supp. materia

    PACMHCI V7, ETRA, May 2023 Editorial

    No full text
    In 2022, ETRA moved its publication of full papers to a journal-based model, and we are delighted to present the second issue of the Proceedings of the ACM on Human-Computer Interaction to focus on contributions from the Eye Tracking Research and Applications (ETRA) community. ETRA is the premier eye-tracking conference that brings together researchers from across disciplines to present advances and innovations in oculomotor research, eye tracking systems, eye movement data analysis, eye tracking applications, and gaze-based interaction. This issue presents 13 full papers accepted for presentation at ETRA 2023 (May 30 - June 2, 2023, in Tübingen, Germany) selected from 37 submissions (35% acceptance rate). We are grateful to all authors for the exciting contributions they have produced and to the Editorial Board and external reviewers for their effort during the entire rigorous reviewing process which resulted in high-quality and insightful reviews for all submitted articles

    Look here! A parametric learning based approach to redirect visual attention

    No full text
    Across photography, marketing, and website design, being able to direct the viewer's attention is a powerful tool. Motivated by professional workflows, we introduce an automatic method to make an image region more attention-capturing via subtle image edits that maintain realism and fidelity to the original. From an input image and a user-provided mask, our GazeShiftNet model predicts a distinct set of global parametric transformations to be applied to the foreground and background image regions separately. We present the results of quantitative and qualitative experiments that demonstrate improvements over prior state-of-the-art. In contrast to existing attention shifting algorithms, our global parametric approach better preserves image semantics and avoids typical generative artifacts. Our edits enable inference at interactive rates on any image size, and easily generalize to videos. Extensions of our model allow for multi-style edits and the ability to both increase and attenuate attention in an image region. Furthermore, users can customize the edited images by dialing the edits up or down via interpolations in parameter space. This paper presents a practical tool that can simplify future image editing pipelines
    corecore